Epidermal growth factor-like domain 7 suppresses intercellular adhesion molecule 1 expression in response to hypoxia/reoxygenation injury in human coronary artery endothelial cells.

نویسندگان

  • Mitesh V Badiwala
  • Laura C Tumiati
  • Jemy M Joseph
  • Rohit Sheshgiri
  • Heather J Ross
  • Diego H Delgado
  • Vivek Rao
چکیده

BACKGROUND Epidermal growth factor-like domain 7 (Egfl7) is a chemoattractant for endothelial cells, and its expression is restricted to endothelial cells. Hypoxia/reoxygenation (H/R) induced endothelial injury that occurs during transplantation contributes to the subsequent development of allograft vasculopathy. We investigated the effect of Egfl7 on endothelial cell intercellular adhesion molecule 1 expression in response to H/R injury. METHODS AND RESULTS Human coronary artery endothelial cells were submitted to hypoxia (0.1% O(2)) followed by normoxia (21% O(2)) in the presence or absence of Egfl7 (100 ng/mL). Hypoxia alone increased the expression of Egfl7×140±8% of control at 3 hours (n=6; P<0.05) and 385±50% of control at 6 hours (n=6; P<0.001). Incubation with Egfl7 during the reoxygenation period prevented intercellular adhesion molecule 1 upregulation (mean fluorescence intensity: 5.37±0.92 versus 3.81±0.21; P<0.05; n=4 per group). Nuclear factor-κB nuclear localization on H/R injury was blocked by Egfl7 administration (cytosolic/nuclear ratio of 0.93±0.01 versus 1.44±0.24; P<0.05; n=4 per group). Inhibitor of nuclear factor-κB protein level was significantly reduced on H/R injury (26±4.6% of control expression; P<0.05; n=4 per group); however, concurrent incubation with Egfl7 attenuated this reduction (46±6.2% of control expression; P<0.05 when compared with H/R injury alone; n=4 per group). CONCLUSIONS Our study reveals the novel observation that hypoxia upregulates human coronary artery endothelial cells expression of Egfl7 and that Egfl7 inhibits expression of intercellular adhesion molecule 1 subsequent to H/R injury. Mechanistically, Egfl7 prevented nuclear factor-κB nuclear localization and augmented inhibitor of nuclear factor-κB protein levels, suggesting that it inhibits nuclear factor-κB activation, a key step in the inflammatory activation of endothelial cells. Egfl7 may be protective against H/R injury incurred during transplantation and may modulate the events that lead to the development of graft vasculopathy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of microRNA-125 on the adhesion molecule expression of integrin beta2 and adhesive determination of endothelial cells isolated from human aorta to monocyte

Background: The immune-mediated responses in vascular cells may include the increased expression of endothelial adhesion molecules, leukocyte rolling and infiltration, cellular lipid dysregulation and vascular smooth muscle cells (VSMCs) differentiation. Investigating the cellular and molecular events involved in the rolling process is useful for treatment or prevention of the vessel stenosis es...

متن کامل

Hypoxia-mediated Induction of Endothelial Cell Interleukin-1a

Tissue injury that accompanies hypoxemia/reoxygenation shares features with the host response in inflammation, suggesting that cytokines, such as IL-1, may act as mediators in this setting. Human endothelial cells (ECs) subjected to hypoxia (Po2 12-14 Torr) elaborated IL-1 activity into conditioned media in a time-dependent manner; this activity was completely neutralized by an antibody to IL-l...

متن کامل

Fractalkine upregulates intercellular adhesion molecule-1 in endothelial cells through CX3CR1 and the Jak Stat5 pathway.

Fractalkine (FKN) is a membrane-bound chemokine that can be released by proteolysis to produce soluble FKN (s-FKN). FKN and its receptor, CX3CR1, are believed to be important factors in atherosclerosis and may play a role in acute inflammatory responses. Although FKN is expressed on endothelial cells (ECs), CX3CR1 is reported to reside mainly on certain leukocyte populations. RT-PCR and Western...

متن کامل

Hypoxia and reoxygenation do not upregulate adhesion molecules and natural killer cell adhesion on human endothelial cells in vitro.

OBJECTIVES Ischemia/reperfusion injury is characterized by endothelial cell activation leading to increased expression of adhesion molecules such as inter-cellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, endothelial- and platelet-selectin (E- and P-selectin), and to the subsequent recruitment of leukocytes. The aim of the present study was to investigate the respec...

متن کامل

Increased expression of ICAM-1 during reoxygenation in brain endothelial cells.

BACKGROUND AND PURPOSE Thrombolysis is a promising therapy for acute ischemic stroke. However, there is evidence that neutrophils may physically plug cerebral microvessels on reperfusion, preventing the full benefit of thrombolysis. We undertook this study to determine whether there was increased endothelial expression of the intercellular adhesion molecule-1 (ICAM-1) gene during hypoxia-reoxyg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 122 11 Suppl  شماره 

صفحات  -

تاریخ انتشار 2010